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SUMMARY 

This paper presents a variant of the method of separation of variables which enables the determination of 
the solution of an elliptic differential equation having Dirichlet conditions along an arbitrary curve D forming 
part of the boundary. The coefficients in the eigenfunction expansions representing the general solution are 
determined by comparison with a special series representation of the Dirichlet condition along D. This rep- 
resentation is obtained by means of the Gram-Schmidt orthogonalization process which uses as its basic non- 
orthogonal set of functions a special set derived directly from the eigenfunctidn expansion. A simple numer- 
ical example concerning the temperature distribution in a semi-infinite parallel slab with a skew end face 
onwhich there is a sinusoidal temperature varation illustrates the application of the method. It is shown that the 
rate of convergence is good and that the asymptotic soluti0n is estimated rapidly and accurately by this method. 

1. Introduction. 

It sometimes happens that an analytical rather than a numerical solution 
is required to a linear elliptic differential equation that is subject to some 
general boundary conditions over part of the boundary which is described 
by attributing constant values to coordinate variables, and to Dirichlet 
conditions along the remainder of the boundary which does not coincide with 
a constant value of a coordinate variable. Under these circumstances the 
method of separation of variables is not directly applicable and recourse 
must be made to an approximate method of solution such as the boundary 
shape perturbation method described by Morse and Feshbach [ 1 ]. Unfortu- 
nately the rate of convergence of this method is usually rather poor when 
non-trivial boundary shape perturbations are involved so that the accom- 
panying manipulative work becomes extremely tedious. 

The present paper describes a simple variant of the method of separation 
of variables which can often be used to advantage in these circumstances. 
The accuracy with which the solution is represented is shown to depend on 
the degree to which the boundary condition on the distorted section of the 
boundary is approximated by a partial sum formed from a certain complete 
orthogonal sequence of functions. Here the word distorted is used to de- 
scribe that part of the boundary which does not coincide with a constant 
value of a coordinate variable. 

Determination of the coefficients in the expansion representing the solution 
involves simple quadratures which can often be performed analytically, 
though when with complicated shapes numerical quadrature becomes neces- 
sary the ensuing task is always much less onerous than the corresponding 
calculations for the perturbation solution since these necessitate multiple 
quadrature s. 

By way of illustration a simple application of the method is made to the 
problem of the steady state temperature distribution in a semi-infinite slab 
of material of finite width, the parallel sides of which are maintained at 
zero temperature whilst a skew end surface is subjected to a sinusoidal 
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temperature distribution with amplitude T I. Finally the maximum principle 
for elliptic differential equations is used to place bounds on the asymptotic 
behaviour of the solution which may be deduced directly from the approx- 
imate solution. From the results it may be concluded that the asymptotic 
component of the approximate solution converges rapidly to the true result. 

2. G e n e r a l  m e t h o d  

To explain the general rnethod it will be sufficient for us to consider a 
function T(x,y), of the independent variables x and y, which satisfies Lap- 
lace's equation 

82T + O2T.. = 0 (2.1) 

8x 2 ay 2 

in some region R, subject to some general boundary conditions on part DI 
of the boundary and to Dirichlet conditions on the remainder D2 of the 
boundary, where Di and D2 are defined as follows. 
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Fig. 1. Diswrbed Boundary Shape 

The boundary D1 comprises the three line segments: 

a K x < b ; y = b '  } 

a '  < x < b ' "  x = a 

a < x  < c  ; y = a '  

( 2 . 2 )  

whilst the boundary D2 is defined by the rectifiable arc 

x = f(y) ; a' <_y _<b', (2.4) 

along which 

T(f(y),y) = T 1 (y) (2.4) 

is some given function. 
Let us now supplement the region R by the addition of the region R (See 

Fig. i.) contained between the arc D2 and line segments D3 defined by: 

b _~ x < c ; y = b'] 
(2 5) 

a '  < y 4. b '  ; x = c 
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We now determine the solution in the region R + R by continuing the 
boundary condition ona Kx < b; y = b' to the segment b <_ x < e; y = b' 
in such a manner that T assumes the specified boundary values along D2. 
This is, of course, an unusually posed boundary value problem in the sense 
that until the problem is solved, the boundary conditions along the remainder 
of D s a r e  unknown. 

Separa t ing  the v a r i a b l e s  in equa t ion  (2.1) by wr i t ing  

T(x ,y )  = X(x) Y(y), (2.6) 

and introducing the separation constant ~ in the usual manner through the 
relation 

I d2y _ ~2  (2.7) 
Y dy 2 

then leads to the result 

Y = A cos ay + B sin ay. (2.8) 

Then, by use of the boundary conditions to be imposed along a <__ x < b; 
y = b' and a < x < c; y = a' _ , a set of eigenvalues ~l, ~2, ... may be 
deduced from equation (2.8) giving rise to the eigenfunctions Yn(Y) of the 
form 

Yn(Y) = kin cos any  + k2n s in  O~ny, (2.9) 

where kin and k2n are known constants. The corresponding eigenfunctions 
X~ (x) are 

Xn(X) = ane~nX + bn e-~nx, (2.10) 

showing that the general solution T(x,y) will be of the form 

T(x,y) = ~ (an eanx + bn e-~nx) (klncos any + k2nsin any), (2.11) 
n:l 

Now, by applying the usual Fourier method [I, Chapter 6] to the 
boundary condition along a' < y < b'; x = a one relationship may 
readily obtained between the a n and b a so that (2. Ii) then takes the form 

T ( x , y )  = ~ Cn(Jqne ~nx +12ne-C~nX)(klnCOS any + k2nsinanY),  (2.12) 
n= t 

where the constants 21n and f2n are known, and it remains to determine 
the constants cn. This will be achieved by utilizing the fact that when 
x = f(y); a' <__ y <_ b', it follows from the boundary condition (2.4) that 

T I (y) = {21n exp (aj(y)) + exp (-anf(y))} x 

X(kln cos any + k2n sin any). (2.13) 

However, before proceeding with the determination of these constants, 
let us first remark that if the boundary condition were known on D3 such 
that expression (2. ii) assumed the required values along the arc D2 then, 
for all physically real boundary conditions, the series (_2. Ii), and hence 
the series (2.13) would be uniformly convergent in IR and R. Consequently, 
re-arrangement of the terms of expression (2.12) is permissible. 

Accordingly then, let us utilize the completeness of the sequences of 
eigenfunctions Xn(x) and Yn(Y), and the fact that re-arrangement of terms 
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is permissible, to begin by forming a complete orthogonal sequence ~n(Y) 
from the functions zn(y) by means of the Gram-Schmidt method [i, 2], 
where 

zn(Y) = {~in exp(anf(Y)) + ~2n exp(-~nf(Y))}(klnC~ + k2n sino~ny). 

(2.14) 
Defining the inner product of two functions h(y) and k(y) on the interval 

a' _<y <_b' by 
b' 

P 

h(y) k(y) dy (h, k) 
,# a' 

we immediately arrive at the complete orthogonal sequence ~n(Y), 

~ - i  (z~, Ck) 
~n(Y) = zn(Y) - E Ck(Y). (2. 15) 

k=l ({~k, ~k) 

Hence, re-writing series (2.13) in the form 

TI(Y) -- ~I d, ~n(Y), (2.16) 

it follows by the orthogonality of the sequence of functions ~n(Y) that 

(T1, ~,) 
dn - " (2 .17)  

Now since, by virtue of equations (2.15), the functions ~n(Y) are known 
in terms of the functions Zn(y), the partial sum approximation sN(Y ) to 
T l(y) which is given by 

N 
sN(y)  = E dn~n(y) ,  (2 .18)  

n = l  

may be re-written in tlre form 

(N) 
SN(Y ) = E Cn zn(y)  (2 .19)  

n = l  

I d e n t i f i c a t i o n  of  the  c o e f f i c i e n t s  c(n N) wi th  the c o e f f i c i e n t s  c a of the c o r -  
r e s p o n d i n g  f u n c t i o n s  a p p e a r i n g  in e x p r e s s i o n  (2 .13)  then  d e t e r m i n e s  the 
a p p r o x i m a t i o n s  Cn (N) to  the f i r s t  N c o n s t a n t s  c n. U t i l i z ing  t h e s e  v a l u e s  in 
s e r i e s  (2 .12)  wi l l  g ive  the p a r t i a l  s u m  a p p r o x i m a t i o n  to the g e n e r a l  s o l u t i o n  
T ( x , y )  which  is ob t a ined  by u s i n g  the  f i r s t  N f u n c t i o n s  {~n(Y). 

C l e a r l y ,  a s  the d i s t o r t e d  b o u n d a r y  D 2 t ends  to the  a s s o c i a t e d  u n d i s t o r t e d  
b o u n d a r y  D s, so  the s o l u t i o n  ob t a ined  by  th i s  m e t h o d  t ends  to the known 
s o l u t i o n  a p p l i c a b l e  to the u n d i s t o r t e d  b o u n d a r y  with the b o u n d a r y  c o n d i t i o n s  
a long  D 3 s e t  e q u a l  to t hose  a long  D 2. 

3. Tempera ture  dist.ribution ~n a semi- in f in i te  plane slab with a skew end 
surface 

By way of illustration we now apply the method of the previous section 
to a simple problem involving steady state temperature distribution. We 
consider a semi-infinite plane slab of material of unit thickness whose 
side faces are maintained at zero temperature whilst a skew end surface 
is subjected to a sinusoidal temperature distribution with amplitude TI. 
A typical cross-section of the slab is illustrated in Fig. 2 in which the 
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T=O 

Y = O  X 

Fig. 2. Semi-Infinite Slab With Skew gnd Surface 

skew end surface is defined by the equation x = Y/x, 0 ~_ y < I. 
Separating the variables in equation (2. I) as indicated, and using the 

boundary condition T = 0 on boundary surfaces y = 0 and y = is x > 0, 
together with the fact that the solution T(x,y) must always remain finite, 
leads directly to the general solution 

_nwx 
T (x,y) = ~ c n e sin n~y (3. I) 

n=l 

which corresponds to equation (2.12). 
Since T = T 1 sin ~y along x = Y/k, 0 < y <_ i, we then have that 

_n!/ 

Cn e x sin nz~y, (3.2) T 1 sin ~y = n--i 

so that in this case the functions Zn(y ) corresponding to (2. 14) are seen 
to be 

-nlf___yy 
Zn(y) = e x sin n~y , n : 1,2 .... 

It is easily verified that the inner products 

1 1 

(Zn' Zn)= )o zn2 (y) dy and (Zm, Zn) = ~o zm (y) zn (y) dy 

respectively have the values: 
-2mr 

3 . ( 1  - e x ) 

(Zn, Zn)= (3.3) 
4n~(l + I/X 2) 

and 

{I + (-I) m+n+l, e 
(Zm~ Zn)-- 2~ 

-(m+n)~ 
X } [ (re+n) 

(m-n) 2 + (m+n)2/~ 2 

- -  ~ 

(re+n) (i + I/)t 2 

( 3 . 4 )  

Using these results together with equation (2.15) then gives rise to an 
orthogonal sequence of functions ~n(Y) on the interval 0 <__'y <__ I. The 
coefficients dn corresponding to (2.17), and hence the approximations 
cn(N) to c n in the N-th approximation then follow directly the ~)n(Y) have 
been determined. The final steps in the calculation can best be illustrated 
by the computation of specific partial sum approximations which will be 
accomplished in the next section. 
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4. Numer ica l  details  o f  sa(y), s4(y) and s0(y) approximations 

If T ( x , y )  is to be s u c c e s s i v e l y  a p p r o x i m a t e d  by  u t i l i z i n g  the s a (y ) ,  s4(Y ) 
and s s ( y  ) a p p r o x i m a t i o n s  to the b o u n d a r y  c o n d i t i o n  a long  the d i s t o r t e d  
b o u n d a r y  c o r r e s p o n d i n g  to the  skew f a c e ,  the m and n of the  p r e v i o u s  
s e c t i o n  m u s t  be a l l o w e d  to a s s u m e  the v a l u e s  1 to  5. S imp le  c a l c u l a t i o n s  
e s t a b l i s h  the fo l l owing  r e s u l t s  f o r  a skew end s u r f a c e  d e f i n ed  by  the 
e q u a t i o n  x = 0 . 1 y  ( i . e .  k = 10): 

Table of (zi ,zj)  

i 
1 2 3 4 5 

J 

0.3674 
0.0536 
0.0081 
0.0066 
0.0028 

0.0536 
0.2818 
0.0731 
0.0164 
0.0105 

0.0081 
0,0731 
0.2227 
0.0806 
0.0234 

0.0066 
0.0164 
0.0806 
0.1810 
0.0820 

0.0028 
0.0105 
0.0234 
0.0820 
0.1508 

Then, from (2.15) the first five orthogonal functions ~n(Y) are 

~l(y) = zl(y), 
r : z2(Y) - 0 . 1 4 5 8  z l ( y ) ,  

~3(Y) = z3(Y) - 0.2623 z2(y ) + 0.0161 zl(y), 

~4(Y) = z4(Y) - 0.3749 z3(y ) + 0.0420 z2(y ) (4.1) 

- 0 . 0 1 5 8  z l ( y ) ,  

~5(Y) = zs(Y) - 0 . 4 8 5 8  z4(y  ) + 0 . 0 8 0 8  zs (y)  

- 0 . 0 3 0 6  z2(y  ) + 0 . 0 0 3 9  z l ( y ) ,  

f r o m  which  i t  f o l l o w s  tha t  

(91, {~1) = 0 . 3 6 7 4 ,  (@2,  @2) = 0 . 2 7 4 1 ,  

(r @3) : 0 . 2 0 3 3 ,  (r @4) = 0 . 1 5 1 4 ,  

(~5, @5) = 0 . 1 1 2 6 .  

Since  T = T 1 sinTry a long  the skew  f ace  the n u m e r a t o r  of (2 .17)  s i m -  
p l i f i e s  to 

1 

(T'~n) = T1 )n sin~ry ~n(Y) dy. 
V 

Using the form of Zn(y ) together with equations (4. I) a simple calculation 
shows that 

( T , ~ )  = 0 . 4 2 9 0 T 1 ,  ( T , ~ 2 )  = - 0 . 0 1 9 9 T  1, 

( T , ~ 8 )  = 0 . 0 0 1 3 T 1 ,  ( T , ~  4) = - 0 . 0 0 1 3 T 1 ,  

(T,{~5) = - 0 . 0 0 1 2 T  1. 

The  d e s i r e d  a p p r o x i m a t i o n s  s3(y) ,  s4(y) and s s (y )  to T1 sinlry a long  the 
skew f a c e  x = 0 . 1 y ,  0 < y <_ I a r e  thus  

ss (y)  = T 1 [ 1 . 1 6 5 0  ~I(Y) 0 .072 8  O2(Y) + 0 . 0 0 6 5 ~ 3 ( Y ) ] ,  (4 .2 )  

s4(Y) = T 1 [ 1 . 1 5 6 0  r 0 . 0 7 2 8  O2(Y) + 0 . 0 0 6 5  ~3(Y) 

- 0. 0088 r  (4 .3 )  
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s S ( y  ) = T 1 [ 1 . 1 5 6 0  ~I(Y) - 0 . 0 7 2 8  ~2(Y) + 0 . 0 0 6 5  ~3(Y) 

- 0 . 0 0 8 8  ~ 4 ( Y )  - 0 . 0 1 1 6  C a ( y ) ] .  

U s i n g  e q u a t i o n s  ( 4 . 1 )  g i v e s  the  a l t e r n a t i v e  e x p r e s s i o n s  in  t e r m s  of  Zn(y) :  

s3 (y )  = T 1 1 1 .  1 7 7 3 z l ( y )  - o.0845z2(y)+ 0.0065z3(y)], ( 4 . 5 )  

s4 (y)  -- T 1 [ 1 .  1774z  1 (y) - 0. 0 7 4 9 z 2 ( y )  + 0. oo98za(y) 
- 0. oo88z4(y)], (4.6) 

ss(y ) = Ti[l.1774z1(y) - 0. 0745z2 (y) + 0.0089z3(y ) 

- 0 . 0 0 3 2 z 4 ( y  ) - 0 . 0 1 1 6 z 6 ( y ) ] .  (4. 7) 

I d e n t i f i c a t i o n  o f  t he  c o e f f i c i e n t s  of  ( 4 . 5 ) t o  ( 4 . 7 )  w i t h  t h e  c o r r e s p o n d i n g  
o n e s  of  ( 3 . 2 )  g i v e s  the  r e s u l t s :  

C a s e  N = 3 

e1(3) = 1 . 1 7 7 4 T 1  ' % ( 3 ) =  _ 0 . 0 7 4 5 T 1  ' % ( 3 ) =  0 . 0 0 6 5 T 1  

C a s e  N = 4 

e l  (4) = 1 . 1 7 7 4 T 1 ,  e2(4) = - 0 . 0 7 4 6 T  1,  %(4) = 0 . 0 0 9 8 T 1 ,  

C4(4) = - 0 . 0 0 8 8 T  1 

C a s e  N = 5 

ci (5) = 1.1774TI, c2(5) = -0.0749Ti, %(5) = 0.0089Ti ' 

c4(5) = -0.0032TI, e5(5) = -0.0116T I. 

The T3, T 4 and T 5 approximations to T(x,y) are thus represented by 

T3(x,y ) : TIll. 1773e -~x sinTry - 0. 0745e "2~x sin27ry 

+ 0. 0065e-a~x sin37ry], (4.8) 

T 4 (x, y) = TIll. 1 774e -~x sin~ry - 0. 0746e -2nx sin27ry 

+ 0. 0098e -3~x sin3~ry - 0. 0088e -4~x sin47ry] (4.9) 

T 5 (x,y) = T ill. 1774e -~x sin~ry - 0. 0749e -2~x sin27ry 

+ 0.0089e -3nx sin3~ry - 0. 0032e -4vx sin47ry 

- 0.0116e -5~x sin57ry]. (4.10) 

5. C o m p a r i s o n  o f  r e s u l t  w i th  u n d i s t o r t e d  c a s e  

It is interesting to compare the results of the previous section with the 
comparison solution T c (x,y) obtained directly by the method of separation 
of variables when the boundary is undistorted, so that the end surface is 
normal to the sides of the slab (i.e. the case k---~. This comparison 
solution may then be used together with the maximum principle for elliptic 
equations [2] to place bounds on the approximations T3(x,y ) to Ts(x,y) to 
the genuine solution T(x,y). In particular, these may also be used to 
estimated the accuracy of the approximations to the true asymptotic be- 
haviour. 

The solution in the undistorted case which is readily seen to be 

T c(x,y) = T 1 e -~x sin y, (5.1) 
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r e q u i r e s  s o m e  m o d i f i c a t i o n  b e f o r e  a u s e f u l  c o m p a r i s o n  m a y  be m a d e  wi th  
T 3 ( x , y  ) to T s ( X , y ) .  By  the  m a x i m u m  p r i n c i p l e  f o r  e l l i p t i c  d i f f e r e n t i a l  
e q u a t i o n s ,  if  a s i n u s o i d  d i s t r i b u t i o n  of a m p l i t u d e  T 1 is  a s s u m e d  a t  x = 0 
t h e n  the r e s u l t i n g  s o l u t i o n  wi l l  underes t ima te  T ( x , y )  a t  c o r r e s p o n d i n g  
po in t s  ( x , y ) ;  w h e r e a s  if  it is a s s u m e d  on the  p l ane  x = 0 . 1 ,  t h e n  the  
r e s u l t i n g  s o l u t i o n  wi l l  o v e r e s t i m a t e  T ( x , y )  a t  c o r r e s p o n d i n g  p o i n t s  f o r  
x ~_ 0.I. 

We thus deduce that 

Tle-~X sinTry < T(x,y) < T1e'~(x-~ sinTry 

o r  e q u i v a l e n t l y ,  f o r  x > 0 . 1 ,  

T i e  -~x s i n ~ y  < T ( x , y )  < 1 .3689Tle-VX s i n ~ y  (5 .2 )  

The asymptotic term in the T 4 and T 5 approximations are identical and 
are seen to be given by 

T5(asy) (x,  y)  = 1. 1 7 7 4 T i e  -~x sin~ry. (5.3) 

As this result is contained within the inequality (5.2) and, further, the 
coefficients c1(3) , el(4) and ci(5)converged so rapidly, we may assume 
that the method rapidly approximates the asymptotic solution and that 
higher approximations serve to improve accuracy for small x. 
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